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Unstable singularities in the U model? 

D Rai Chaudhuri and R B Jones 
Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 

Received 2 February 1976 

Abstract. In the semi-classical approximation to the SU(3) U model we show how the 
breakdown of symmetry can be viewed as an unfolding of an unstable singularity in the 
potential. The examples arising include the Riemann-Hugoniot and parabolic umbilic 
catastrophes of Thom as well as catastrophes of much larger codimension. 

1. Introduction 

The CT model (Gell-Mann and LCvy 1960, Uvy 1967) demonstrates both spontaneous 
and explicit symmetry breaking of a chiral SU(n) 0 SU(n) invariance. The model has 
been studied both in the tree graph (semi-classical) approximation (Carruthers and 
Haymaker 1972 and references therein, McKay et a1 1973, Hu 1973b) and as a 
renormalized quantum field theory (Lee 1969, Chan and Haymaker 1973a, b). Starting 
from a basic chiral invariant model, one attempts to reach by perturbation methods a 
broken symmetry physical model retaining only a residual symmetry of isospin, parity 
and hypercharge. Studies in the tree graph approximation show how such calculations 
can be spoiled by the occurrence of singularities that limit convergence of a perturba- 
tion expansion well before physical values of the expansion parameters are reached 
(Carruthers and Haymaker 1971a). Such studies indicate also that the order in which 
one turns on the symmetry breaking parameters is important if one is to reach a 
physically reasonable model from the underlying symmetric starting point without 
encountering a singularity (Carruthers and Haymaker 197 lb). 

Our aim here is to look at the SU(3)0SU(3) 0 model in the semi-classical 
approximation and to show how the problem of symmetry breakdown fits closely into 
the mathematical theory of singularities of smooth maps. We will demonstrate how the 
breakdown of symmetry in this model can be viewed as the unfolding of an unstable but 
finitely determined map germ with certain Lagrangian parameters playing the role of 
control variables and the vacuum expectation value of scalar fields serving as state 
variables. The difficulties met with in turning on symmetry breaking by perturbation 
theory constitute the phenomenon called a catastrophe by Thom (1972). In the 
SU(3) 0 SU(3) U model we shall see examples of Thom’s Riemann-Hugoniot and 
parabolic umbilic catastrophes as well as the possibility of catastrophes of much larger 
codimension. 

In what follows, we will try to point out, without too much detail, how several 
physical concepts in the semi-classical approximation to the U model parallel closely the 
mathematical ideas of singularity theory. For all details of singularity theory we refer 

t Based in part on a PhD Thesis submitted to London University, 1974. 
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the reader to the excellent lecture notes of Amol'd (1968) and Wall (1971) where clear 
expositions of, and references to, the work of Boardman and Mather may be found. For 
examples of the physical application of the U model one may consult any of the 
references already mentioned. 

2. Basic concepts 

The SU(3) 0 SU(3) form of the U model is constructed with eighteen fields transform- 
ing as members of the (3 ,3 )0 (3 ,3 )  representation of SU(3)0SU(3) (Gvy 1967, 
Carruthers and Haymaker 1972 and references therein). These fields, a scalar nonet oi 
and a pseudoscalar nonet & are simply described by a three by three complex matrix& 

with the usual SU(3) matrices A'. Under chiral transformation A changes to UAV' 
(U, V unitary matrices) so that the basic invariant Lagrangian density for the model can 
be written in the form 

L = $ Tr a,& 'FA + f l  (Tr A 'A)' + f 2  Tr(A 'A)2 + g (det A + det A '), (2.2) 
withf,, f 2 ,  g as coupling parameters. Writing L = T- V we have a potential function V 
defined by 

V =  -fl(Tr dtA)'-f2 Tr(A'A)'-g(det A +detA') 

= V(U0,. 3 U89 4 0 ,  * * * 3 4 8 ) .  (2.3) 
In the semi-classical approximation we regard V as a classical potential function to be 
minimized with respect to its field variables. In this approximation the vacuum 
expectation values of the fields are given by the value of the field variables at which the 
extremum occurs. The squares of the particle masses are obtained in this model as 
coefficients of the quadratic terms in the Taylor series expansion of V about its 
minimum. Higher-order terms in such a series expansion contribute to interactions 
among the fields, but we will not consider these interaction terms in the present 
discussion. 

The potential Vis SU(3) 0 SU(3) invariant but for a more realistic model we wish to 
preserve only a residual symmetry of isospin, hypercharge and parity. Therefore, 
although V clearly has an extremum when all fields vanish, ai = +i = 0, we will look for 
additional extrema at points where 4i = 0, i = 0, 1, . . . , 8 ,  ai = 0, j = 1,2,  . . . , 7 ,  but 
u0 # 0, (78 # 0. Such extrema spontaneously break the chiral symmetry. Moreover, we 
have the freedom to modify V by adding terms such as eOgO + Egg8 which explicitly 
break the symmetry. Among the many different forms which we might choose for V, for 
simplicity we will restrict ourselves by only allowing explicit symmetry breaking terms 
which belong to the (3 ,3 )0 (3 ,3 )  representation of SU(3) 0 SU(3) (Gell-Mann et a1 
1968). 

Since we are interested in extrema of V at which a0 # 0, U8 # 0 but all other fields 
vanish, define a reduced potential u(a0, as) by 

u(U00, U S )  = v(Ui, 4~i) ldo=d1= ... = * ~ = u ~ = ~ z = . . . = u , = O .  (2.4) 
The field vacuum expectation values 50 = (uo), 58 = (as) are now determined by the 
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values of uo, us at which U has an extremum, while all other fields have zero vacuum 
expectation values. An expansion of U about the extremum gives us not only masses for 
the scalar fields go, Us, but, by inserting the expansion into V as well, we induce mass 
contributions for the other sixteen fields as well. It is clear from (2.3) that both V and U 
have unstable singularities (coincident extrema) at bi = ai = 0, i = 0, . . .8. For sixteen 
fields the residual symmetry requirements constrain the coincident extrema to remain 
coincident at zero field strength. However, we may allow the unstable coincident 
singularities at go = us = 0 to split and move away from the origin to give breakdown of 
the chiral symmetry. That is to say, we allow the unstable singularity of U at the origin to 
unfold. 

Next we must discuss the notion of stability. The physical stability of the U model in 
the semi-classical approximation simply means that the potential must be bounded 
below and that all squared particle masses should be positive definite. On the other 
hand, there are several mathematical notions of stability of a map at a point. Mather 
develops the mathematical idea of stability with respect to various groups of 
diffeomorphisms which act on certain function spaces (see Wall 1971). The reduced 
potential U above is an example of a function on which these different groups might act. 
The simplest group W acts on U by diffeomorphically changing coordinates in the source 
space of U. We may also change coordinates in the target space of U by a group 2. We 
may do both together by a product group d = W 0 9, or even by a semi-direct product 
X, in which changes in the target space depend on position in the source space. 92 gives 
the weakest notion of stability and X the strongest. Which of these notions is suitable to 
the physical context of the U model? 

To interpret physically a field theory model we need to be able to make power series 
expansions of the potential in terms of its field variables. However, the equivalence 
theorem (Coleman t t  a1 1969) tells us that the physical content of the field theory is not 
altered if we re-define the field variables by analytic diffeomorphisms. Such field 
re-definition is done by elements of the group W above, hence %?-stability is the 
mathematical concept of stability suitable for the U model. Although Mather's analysis 
deals with diffeomorphisms, we need here only the simpler concept of analytic 
stability under the group 9. The mathematical problem posed by the u model can now 
be simply stated. Regarding u(u0, us) as a map germ analytically unstable at 
uo = US = 0, determine its codimension (with respect to W )  in the space of analytic map 
germs and construct unfoldings. 

A word of technical caution is in order at this point. We are grateful to Professor 
Wall (private communication) for pointing out the following results to us: (i) the 
codimension of a germ can be different under the different groups mentioned above; (ii) 
however, codims U <CO if and only if codimgcu<oo; (iii) in general 
codimx U s codimw U ; (iv) for homogeneous germs codimx U = codimw U ; (v) all 
codimensions less than or equal to six are the same. In the examples given in § 4 we 
often found it much easier to compute codimensions using X rather than W. The points 
listed above helped us to relate codimx to codim9. In one of these examples we have 
only computed codimx and not codim9. 

3. Unfoldings 

We now need some notation. By X we denote an n-dimensional Euclidean space with 
coordinates (state variables) x = (xlr x2 ,  . . . , x") .  By S denote an N-dimensional 



1352 D Rai Chaudhun and R B Jones 

Euclidean space with coordinates (control variables) s = (sl, s2, . . . , sN) .  Let M = 
(X, S )  be the Cartesian product of X and S and let P be a Euclidean space with 
coordinates y = (yl, yz, . . . , Y~+~). Let v(xI, . . . , x,) be the germ of a map from X to R 
unstable at the origin of X but of finite dimension N. According to Mather’s analysis 
(see Wall 1971) choose N basis elements f l ( x ) ,  f2(n), . . . , f N ( x )  for the unfolding of v, 
and define the map H : M + P 

At the same time we will be interested in the map h : X+ R defined by 

N 

j=l 
yl= u ( x > +  1 Sjf iCX), (3.16) 

where sl, . . . , sN are regarded as h e d .  Either (3.1~) or (3.16) can be viewed as an 
unfolding of U (mom 1972, Wall 1971). The map H ‘lifts’ the unstable singularity of v 
at x = 0 to a stable singularity of H at x = 0, s = 0. Clearly the first differential of H, dH, 
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d2H so that Z" may be subdivided into regions each of which corresponds to k e d  index 
and rank of this quadratic form. Such regions are closely related to the Boardman 
manifolds Z"', O S  j S n (Amol'd 1968). 

By H', denote the restriction of H to the manifold E", 

H' = HIZ". (3.4) 

Then we may regard Z",', 0 c j s n, as the set of points of Z" at which ker d H  has 
dimension j (Amol'd 1968). To see what this means in the U model context, suppose we 
are at a point (xo, so) of Z" which is so situated that we may lift the variables sl, . . . , sN to 
serve as coordinates in the tangent space to Z" at (xo, so), TZ". From ( 3 . 1 ~ )  and (3.4) it 
is clear that dH' is of rank N at (so, so) and ker dH' is void, hence the point (xo, so) lies in 
the manifold Z"". In other words Z"*O consists of the points of Z" at which we may 
identify 73 with TZ" (using the si as coordinates in both S and TS) to get 

The points in Z"*O are those points in 2" at which the tangent spaces 7X and TZ" are 
transverse. Consequently the manifolds Z"", j # 0, consist of points of Z" at which ITX 
and TZ" are not transverse and have an intersection TX n TZ" of non-zero dimension. 
At such a point in Z",', we may choose at least one coordinate XI in TXn TI;". We then 
can choose local coordinates (XI, si, . . . , sh) on Z" and (XI, x2,  . . . , x, )  on X. Since by 
(3.2) grad, y l  vanishes identically on Z", we see that 

a2y1/ax&, = 0 

at this point for j = 1,2,  . . . n. Depending on the dimension of TXn TZ" there may be 
up to n such coordinates xi. We conclude that C"' contains those points of Z" at which 
we may choose j local coordinates xl, . . . , xi in TC" such that 

a2yl/dxIaxk = 0, i = l , 2  , . . . ,  j ,  k = 1, . . . , n. 

Comparing this with (3.3) we can say, in physical terms, that Z"" is the locus of points on 
Z" at which j particle masses associated with the scalar fields xl, . . . , xi vanish. 

For physical stability of the (+ model we desire the state variables (fields) to lie only in 
that portion of Z" in which all squared particle masses are positive definite. If we denote 
this region of physical stability by p, we observe that 2" is a subset of bounded by 
Z",' which we must enter to make at least one squared scalar mass vanish and so become 
negative. The transversality argument above concerning 7X and TZ" also shows that if 
the state variables xi have branch points as functions of the control variables si, then 
such branch points can occur only at 'folds' of E", i.e., only at points lying in some 8"" for 
j it 0. In physical terms, such branch points can occur only at points where at least one 
scalar mass vanishes as was first pointed out by McKay and Palmer (1972). 

4. Examples 

We now illustrate the general considerations above by specific examples based on the U 
model potential function (2.3). In order that V be bounded from below for large values 
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of the fields we must require that 

Bearing in mind (4.1) we start with a simple example which can be visualized readily to 
illustrate the concepts of the previous sections. Let g 8  be held fixed at the origin, and 
consider U to depend only on the variable x1 = go. In addition set g = 0, corresponding 
to scale invariance of the model (Carruthers and Haymaker 1971b). From (2.3) and 
(2.4) we have 

U l ( X 1 )  = - ( f 1 + 9 2 ) d .  ( 4 . 2 ~ ~ )  

The germ u l  has a simple unstable singularity at x 1  = 0 consisting of three coincident 
extrema. One readily calculates codim9 u1 = 2, with unfolding h given by 

y 1 =  - ( f l + f f i ) x ~ + s l x l + s Z X : .  (4.26) 

This is Thom's (1972) Riemann-Hugoniot catastrophe. The singularity surface Z' of 
the map H corresponding to h of (4.2b) is defined by 

grad,, y l  =-4(fl+$f2)x:+sl+2s2x1 = O .  ( 4 . 2 ~ )  

The squared mass m; of the field uo is given by (3.3) as 

mi=a2yl /dx:=  -12(fl+4f2)x:+2s2. (4.2d) 

The unfolding moves the coincident extrema apart, either into the complex plane 
(s2 > 0) or into two additional real extrema (s2 < 0). The singularity surface Z1 is a ruled 
surface with a pair of folds for s2 < 0. On Z', mi  can be both positive and ne ative. The 
condition m i  = 0 defines Z1,', a one-dimensional manifold, which splits Z'*' into two 
connected parts, one with positive mi, one with negative mi. E'*' coincides with the 
fold lines of Z1 and one can readily see that along Z1*', the tangent plane to 2' is not 
transverse to the x1 axis. In physical terms we can realize this unfolding by adding to the 
original potential V in (2.3) the terms $k2 Tr(&'A)+ eOu0. The bare mass term p 2  is 
chiral invariant while the linear term in eo explicitly breaks the symmetry. Nevertheless 
p 2  and EO are on the same footing as control parameters stabilizing the singularity of 2rl. 

Now modify the example slightly by allowing the cubic interaction term to be 
present initially with g # 0. Then we have 

7J2(x1) = -(fl+4fz)X:+(2g/3J3)x:. (4.3a) 

The germ u2 differs from u1 because the presence of the cubic term has already moved 
one extremum of u1 a finite distance away from x1 = 0. The origin is still an unstable 
singularity, but it is unstable like x :  rather than like x :  as in ul .  Hence codimge u2 = 1, 
with unfolding 

y 1 =  U2(xl )+s lX1.  (4.3b) 

This example emphasizes the point that the type of instability and the manner of 
unfolding depend strongly on our choice of the initial unstable germ U. Speaking 
physically we might say that the type of instability depends on what we consider to be 
the a priori underlying chiral invariant theory, 
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Now look at non-trivial symmetry breaking involving the two fields uo, US. Let us do 
the stability analysis in terms of the simple variables 

(4.4) 

Assumingfl, f2, g to be all non-zero constants given initially (consistent with (4.1)), we 
write the reduced potential as 

(4.5a) 

The stability analysis of u3 is done most simply in terms of the group X. We find that if 
fl +f2 # 0, codimx u3 = 4, and hence codim9 u3 = 4 by the remarks above at the end of 
9 2. The unfolding can be written as 

(4.5b) 

By a theorem of Lu (1970) there exists an analytic change of coordinates that converts 
(4.56) into the standard form of Thom's (1972) parabolic umbilic. Iff, +f2 = 0, u3 has 
infinite codimension and there is no unfolding. From (4.1) we note that this situation 
corresponds to the boundary of the region of physical stability. It is clear intuitively why 
no classification is possible for this case. If f l  +f2 = 0, u3 contains x: as a common factor 
in all its terms and hence the extremum at the origin is not isolated but lies on a line of 
extrema given by x1 = 0. The breakdown of the mathematical classification for a 
non-isolated extremum is reflected in the physical ambiguity of a potential with a 
non-isolated minimum. 

For u3, as for u2, the cubic interaction terms (g # 0) reduce the instability at the 
origin. Thus let us demand g = 0 from the beginning. We have 

u3(x1, x2) = -(fl +$f2)x': - (fl +f2)x - 2flx :x; - gx :x2* 

2 2 y1 = u 3 ( x ~ , x 2 ) + s l x ~ + s ~ x ~ + s ~ x 1 + s 4 x ~ .  

(4.6) 

where f l ,  f2 are assumed as fixed constants. Since u4 is homogeneous the X and 3 
analyses are the same. We note first that u4 has infinite codimension in the cases f2 = 0, 
f l  +f2 = 0, fl + i f 2  = 0, fl + i f 2  = 0. As for u3,  these exceptional cases represent 
instances where the extremum at the origin is not isolated. Excluding these exceptional 
cases we find codim9 u4 = 8. Basis functions for an unfolding can be chosen to be xl ,  x2, 
xf ,  x1x2, x:, x:x2, and x:xi. Note the curious fact that the cubic interaction term 
x:x2 of u3 here reappears but as a basis element in the unfolding of v4. Moreover, one 
quartic term has appeared. Instead of using x:x;, an equivalent basis element is 
(x: which is just the part of u4 with couplingstrengthfl. Althoughfl was assumed 
fixed to begin with, it must be varied in order to stabilize u4. From the viewpoint of u4, 
both fl and g should be control parameters. 

The most economic choice of initial unstable germ is 

u5(xli x2) =-if2(x:+2xi), (4.7a) 
withf2 fixed and non-zero. The germ us  has an isolated unstable extremum at the origin 
with codimw u5 = 8 and unfolding 

y1 = uj(X1, x2) + S I X 1  + ~ 2 ~ ~ + ~ 3 ~ ~ + ~ ~ ~ ~ + ~ ~ ~ 1 x 2  +s6x?x2 + s7xIx2 2 +s8(x:+x22)2. (4.7b) 
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As a final example we allow spontaneous breaking of isospin invariance by looking 
for an extremum at uo # 0, us # 0, a3 # 0 (Hu 1973a). If we define 

we have a reduced potential 

U 6 ( X 1 ,  x2, x 3 )  = -i(f, +fZ)(x:+x2+4x:)-bf*(x:xi + 2x:x:+ 2xZx:) -gx1x2x3. (4.9) 

Withfl,f2, and g fixed and non-zero, we find codimx 06 = 9. We have not calculated the 
codimension with respect to 3. A basis for a X-unfolding is given by x l ,  x2 ,  x3, x1x2 ,  
x 1 x 3 ,  x Z x 3 ,  xs, xi,  x:. If as in 0 5  we assume f l  = g = 0 and start with only f2 # 0, then 

v7(x1, x2, x 3 )  =-if2(X:+xl+4x:) (4.10) 

is homogeneous with codimgD v7 = 26. A point of interest here is that some basis 
elements for an unfolding are of higher order than u7 itself, namely x:xixJ, x:x2x:, 
x l X Z x 3 ,  and x I x 2 x 3 .  

2 2  2 2 2  

5. Discussion 

We hope it is now clear how the familiar physical ideas of the U model illustrate many of 
the mathematical ideas associated with unstable singularities. A striking aspect of the 
examples above is that most of the control parameters in the unfolding can be realized 
naturally in the U model by adding suitable terms to the initial potential Vin (2.3). Thus 
for 03, if we add to V the terms fp2  Tr(A+A) + eouo+ E8(Ts, then p2, eo, € 8  realize three 
of the four control variables s l , .  . . , s4 in (4.56). However, by keeping the bare mass 
term chiral invariant we get s3 = s4 = $p2 and thus constrain one dimension of the 
unfolding. The work of McKay et a1 (1973) illustrates the potential u5. They add two 
further terms to V, B&O+B8U& where 

(5.1) 

They remain within the (3,3)0(3,3) model of symmetry breaking but with (5.1) they 
can in principle realize seven of the eight control variables in (4.76) through the 
Lagrangian parameters fl, g, p , E ~ ,  eS, Po, 88. However, one still has the constraint 
s7 = 0 in their model. One can realize s7 within the same scheme by adding a cubic term 
to the potential, (YO WO + (Y8 w8, 

U. I =- a (detA+detAt) .  
aUi 

2 

a 
aUi 

W, = -(Tr &+A)’, (5.2) 

where one of the two degrees of freedom a0, combines with g and the other gives s7. 
Thus the unfolding (4.76) can be realized in principle within the U model although 
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for physical reasons one would normally constrain the unfolding by requiring 

From the mathematical ideas sketched above we note two conclusions of physical 
importance. Firstly, the codimension of the potential germ under the group 9 gives an 
upper limit to the number of degrees of freedom which should come into play in a 
symmetry breakdown. So far as physical constraints allow, all these dimensions of 
unfolding should be realized and explored in a physical model. Secondly, essentially all 
Lagrangian parameters should be viewed as control variables whether they multiply 
invariant interaction terms or terms which explicitly break the symmetry. One should 
therefore feel free to vary all of them in turning on or off the symmetry breaking 
(Carruthers and Haymaker 1971b). 

Finally we must note that in some respects field theory models like the U model do 
not at all parallel the mathematical singularity theory. For example, the unfolding of v7 
above produced terms of fifth and sixth order in fields which must be rejected in a 
renormalizable quantum field theory. Because our potential V retained a residual 
symmetry, we could only examine the singularity of v(u,,,u~) while ignoring the 
dependence on the other sixteen fields. Although the Boardman manifolds Ens' are 
related to the question of mass positivity for the go, u8 fields, the sixteen other fields 
must also have positive squared masses which imposes a still finer partition of the 
singularity surface L" (Okubo and Mathur 1970a, b). In spite of these differences we 
may still hope that further developments in singularity theory will give added insight on 
the phenomenon of symmetry breakdown. 

E81EO = PSIBO = adao. 
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